Robust Decentralized Low-Rank Matrix Decomposition

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust Rotation Synchronization via Low-rank and Sparse Matrix Decomposition

This paper deals with the rotation synchronization problem, which arises in global registration of 3D point-sets and in structure from motion. The problem is formulated in an unprecedented way as a “low-rank and sparse” matrix decomposition that handles both outliers and missing data. A minimization strategy, dubbed R-GoDec, is also proposed and evaluated experimentally against state-of-the-art...

متن کامل

Randomized Algorithms for Low-Rank Matrix Decomposition

Low-rank matrix factorization is one of the most useful tools in scientific computing and data analysis. The goal of low-rank factorization is to decompose a matrix into a product of two smaller matrices of lower rank that approximates the original matrix well. Such a decomposition exposes the low-rank structure of the data, requires less storage, and subsequent matrix operations require less c...

متن کامل

Decomposition Approach for Low-rank Matrix Completion

In this paper, we describe a low-rank matrix completion method based on matrix decomposition. An incomplete matrix is decomposed into submatrices which are filled with a proposed trimming step and then are recombined to form a low-rank completed matrix. The divide-and-conquer approach can significantly reduce computation complexity and storage requirement. Moreover, the proposed decomposition m...

متن کامل

Online Robust Low Rank Matrix Recovery

Low rank matrix recovery has shown its importance as a theoretic foundation in many areas of information processing. Its solutions are usually obtained in batch mode that requires to load all the data into memory during processing, and thus are hardly applicable on large scale data. Moreover, a fraction of data may be severely contaminated by outliers, which makes accurate recovery significantl...

متن کامل

Robust Weighted Low-Rank Matrix Approximation

The calculation of a low-rank approximation to a matrix is fundamental to many algorithms in computer vision and other fields. One of the primary tools used for calculating such low-rank approximations is the Singular Value Decomposition, but this method is not applicable in the case where there are outliers or missing elements in the data. Unfortunately this is often the case in practice. We p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: ACM Transactions on Intelligent Systems and Technology

سال: 2016

ISSN: 2157-6904,2157-6912

DOI: 10.1145/2854157